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Abstract

Vector quantization is a system in which a distortion function is minimized for multidimensional optimization problems. The

purpose of such a system is data compression. In this paper, a parallel approach using the competitive continuous Hop®eld
neural network (CCHNN) is proposed for the vector quantization in image compression. In CCHNN, the codebook design is
conceptually considered as a clustering problem. Here, it is a kind of continuous Hop®eld network model imposed by the

winner-take-all mechanism, working toward minimizing an objective function that is de®ned as the average distortion measure
between any two training vectors within the same class (within-class). It also forward maximizes an objective function de®ned as
the average distortion measure between any two training vectors in separate classes (between-class). For an image of n training

vectors and c objects of interest, the proposed CCHNN would consist of n� c neurons. Each neuron (or training vector)
occupies l� l components of a training vector. In the experimental results, the proposed method shows more promising results
after convergence than the generalized Lloyd algorithm. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The idea of the vector quantization algorithm,
which shows that a better compression performance
can always be completed by coding vectors instead of
scales, comes from Shannon's rate-distortion theory in
information theory. Vector quantization is an
approach that maps analog signals or discrete vectors
into a sequence of digital signals for communication or
storage in a channel. The goal of vector quantization
is the creation of a codebook, for which the average
distortion generated by approximating a training vec-
tor by a codevector in the codebook is minimized. The
minimization of the average distortion measure is gen-
erally achieved by a gradient-descent-based iterative
procedure which is called the generalized Lloyd algor-
ithm (GLA) (Lloyd, 1982). In accordance with the
cluster center in the previous iteration and the nearest-
neighbor rule, the GLA performs a positive improve-
ment, to update the codebook at every iteration.

A great many vector-quantization approaches have

been proposed for image compression by several

researchersÐLinde et al. (1980), Gray (1984), Chang

et al. (1988), Netravali (1988), Gersho and Gray

(1992), Riskin et al. (1990), Yair et al. (1992), Zeger et

al. (1992), and Andrew and Palaniswami (1996). In ad-

dition, neural-network-based techniques have been

used to address vector quantization. Yair et al. (1992)

presented vector-quantizer techniques incorporating

stochastic relaxation with a competitive learning strat-

egy and a `soft' competitive scheme. Instead of the

GLA, which is a batch method, competitive learning is

an on-line approach, to update the codebook whenever

a training vector is presented. Another vector-quan-

tized design algorithm, which incorporates simulated

annealing and the Lloyd iteration, was proposed by

Zeger et al. (1992). In their algorithm, training vectors

move randomly between neighboring clusters until

thermal equilibrium is reached. However, reaching

thermal equilibrium at a low temperature might take a

very long time in the simulated annealing (SA) algor-

ithm. In addition, the annealing network is a di�cult
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technique, because several penalty terms need to be
adjusted for the purpose of generating good solutions.

In this paper, a vector-quantizer design approach,
based on the continuous Hop®eld neural-network
model with competitive learning for image com-
pression, is presented. The whole image is divided into
n blocks (a block represents a training vector which
occupies l� l components) and mapped on to a two-
dimensional Hop®eld neural network which consists of
a grid of n� c neurons, with each row representing a
training vector, and each column representing a code-
vector of the codebook. The energy function used for
the CCHNN is formulated on the basis of within-class
or between-class scatter matrices, a concept widely
used in pattern classi®cation (Fukunaga, 1972). That
is, the energy function, to be called the `scatter energy
function', is formed by a within-class (intra-class) or
between-class (inter-class) scatter energy function. In
order to achieve the best classi®cation, the scatter
energy function should be minimized in such a fashion
that either the intra-class scatter energy is minimized,
or the inter-class scatter energy is maximized. With
these structures, the image compression based on vec-
tor quantization can then be regarded as an optimiz-
ation problem, de®ned as the scatter energy function
depicted in this network. The training vectors are then
partitioned into di�erent feasible classes when the scat-
ter energy function has converged. Then, the codebook
is just updated with the centers of the classes after the
last iteration.

This paper is organized as follows. Section 2 demon-
strates the general properties for VQ design in image
compression. In Section 3, the properties of a vector-
quantizer design approach using the CCHNN algor-
ithm based on within-class and between-class scatter
matrices, along with the competitive learning, are
described. Section 4 presents several experimental
results. Section 5 gives the discussion and conclusions.
Finally, the minimized intra-class Euclidean distance is
equivalent to maximizing the inter-class Euclidean dis-
tance, and the convergence of the CCHNN based on
within-class and between-class scatter matrices is also
proved in the Appendix.

2. Vector quantization

A vector quantizer is a technique that maps a
Euclidean l� l-dimensional space Rl� l into a set {Yx,
x=1, 2, . . . , n} of points in Rl� l, called a codebook.
A vector quantizer approximates a training vector
from Rl� l with as little distortion as possible by one
of the codevectors in the codebook. Suppose an image
is divided into n blocks (vectors of pixels) and each
block occupies l� l pixels. The performance of a sys-
tem by an average distortion E[d(Xx, Yx)] between an

input sequence of training vectors {Xx, x=1,2, . . . , n}
and an output sequence of codevectors is de®ned as

Dx;y � E�d�Xx;Yx�� � 1

n

Xn
x�1

d�Xx;Yx� �1�

The distortion measure d(Xx, Yx), the squared
Euclidean distance between vectors, is de®ned as

d�Xx;Yx� � kXx ÿ Yxk2 �
Xl�l
k�1
�xk ÿ yk�2 �2�

A vector quantizer is optimal if the average distortion
converges to a minimum value. The nearest neighbor
for the clustering condition and the centroid condition
for the codevectors, used by Linde et al. (1980) to gen-
eralize the Lloyd algorithm (Lloyd, 1982), are necess-
ary conditions on the encoder and decoder of a vector
quantizer. The GLA iteratively decreases the average
distortion for a given training vector. At each iter-
ation, the GLA produces a new quantizer that satis®es
the necessary centroid condition and obtains an aver-
age distortion that is less than or equal to that
obtained in the previous iteration. In the following sec-
tion, the vector quantization using the proposed algor-
ithm will be discussed.

3. Vector quantizer using competitive continuous
Hop®eld neutral network

The Hop®eld neural network has occupied the atten-
tion of several investigatorsÐHop®eld (1982),
Hop®eld and Tank (1982), Cheng et al. (1996), Chung
et al. (1994), Yang and Dillon (1994), Tsai et al. (1993)
Washizawa (1993), Steck and Balakrishnan (1994),
Amatur et al. (1992), and Kim et al. (1992), with its
features of a simple architecture and the potential for
parallel implementation, has been studied extensively
during the past decade. An application of the competi-
tive Hop®eld neural network to medical image segmen-
tation was described by Cheng et al. (1996). Polygonal
approximation using a competitive Hop®eld neural
network was demonstrated by Chung et al. (1994).
Cheng et al. (1996) and Chung et al. (1994) used the
winner-take-all rule to adopt in the two-dimensional
discrete Hop®eld neural network, to eliminate the need
for ®nding weighting factors in the energy function.
The network consists of n� c neurons, which are fully
interconnected neurons. Let Vx,i denote the output of
neuron (x, i) and Tx,i;y,j be the interconnection weight
between the neuron (x, i) and the neuron ( y, j). A
neuron (x, i) receives each neuron ( y, j) with Tx,i;y,j

and a bias Ix,i from exterior. The two-dimensional
fully connected Hop®eld neural network consists of
massive interconnected neurons in the application of
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optimization problem. The network minimizes a con-
tinuous-model energy function de®ned by

E � ÿ 1

2

X
x

X
y

X
i

X
j

Tx;i;y;jVx;iVy;j

� 1

l

X
x

X
i

1

Rx;i

Z Vx;i

0

gÿ1�x� dx

ÿ
X
x

X
i

Ix;iVx;i �3�

where l is a constant called the gain parameter, and g
is the sigmoid function. An image is divided into n
blocks (a block represents a training vector that oc-
cupies l� l components) and mapped to a two-dimen-
sional Hop®eld neural network. In this case, for an
image of n training vectors and c classes of interest
(the class centroid is mapped into appropriate codevec-
tors in the codebook), the proposed CCHNN would
consist of n� c neurons. In the application of the
classi®cation procedure, the intraset (within-class) dis-
tance should be small, whereas the interset (between-
class) distance should be large. These two criteria
satisfy the nearest-neighbor condition. Instead of itera-
tively updating the codevectors in the codebook using
GLA, the proposed CCHNN updates the codevectors
just once after the last iteration, when the energy func-
tion has converged. The two-dimensional Hop®eld net-
work structures based on within-class and between-
class scatter matrices are discussed below.

3.1. The within-class scatter energy

Using the within-class scatter matrix criteria, a two-
dimensional Hop®eld neural network can be modi®ed
to a partially interconnected structure that is only fully
interconnected between neurons in the same column
(the same class). The energy function, de®ned in
Eq. (3), can be modi®ed as

Ew � ÿ 1

2

Xn
x�1

Xn
y�1

Xc
i�1

Tx;i;y;iVx;iVy;i

� 1

l

Xn
x�1

Xc
i�1

1

Rx;i

Z Vx;i

0

gÿ1�x� dx

ÿ
Xn
x�1

Xc
i�1

Ix;iVx;i �4�

where n is the number of training vectors, and c is the
number of classes. The dynamic equation for the neur-
ons is modi®ed as

Cx;i
dUx;i

dt
� ÿUx;i

Rx;i
�
Xn
y�1

Tx;i;y;iVy;i � Ix;i �5�

All of the terms in Tx,i;y,i contain arbitrary constants,

and Ix,i can be adjusted to any desired value. The
input to each neuron can be iteratively updated by

Ux;i�t� 1� � Ux;i�t� � dUx;i�t�
dt

�6�

The input±output function for the xth row is given by

Vx;j�t� 1� � 1; if i � argfmaxk�Ux;i�t��g
0; if j 6� i

�
�7�

Amatur et al. (1992) pointed out that the monotonicity
property of the maximum neuron is equivalent to a
MacCulloch±Pitts neuron with a dynamic threshold
equal to Ux,i. Because T is symmetric (Tx,i;y,i=Ty,i;x,i),
the partial derivative @Ew/@Vx,i may be calculated by

@Ew

@Vx;i
� ÿ

Xn
y�1

Tx;i;y;iVy;i � 1

Rx;i
Ux;i ÿ Ix;i

� ÿCx;i
dUx;i

dt
�8�

The objective function for describing the vector quanti-
zer of the image compression based upon the average
squared Euclidean distance between any two training
vectors in the same class is de®ned as

Ew � A

2

Xn
x�1

Xn
y�1

Xc
i�1

1Pn
h�1 Vh;i

Vx;iDx;yVy;i

� B

2

Xn
x�1

Xc
i�1

Xc
j�1

Vx;iVx;j

� C

2

Xn
x�1

Xc
i�1

Vx;i

 !
ÿ n

" #2

�9�

where S n
h=1Vh,i is the number of training vectors in

class i, and Dx,y, de®ned in Eq. (1), indicates the aver-
age distortion function between training vectors X and
Y. The ®rst term of Eq. (9) is the average distortion
over c classes. The second term makes sure that no
training vector can be assigned to more than one class
in the ®nal classi®cation. The third term guarantees
that the n training vectors can only be distributed
among these c classes. More speci®cally, the last two
penalty terms impose constraints on the objective func-
tion, and the ®rst term serves to minimize average
intra-class distortion from one training vector to
another in one class. As mentioned by Chung et al.
(1994), the quality of the classi®cation is very sensitive
to the weighting factors A, B and C. Searching for op-
timal values of these weighting factors is expected to
be time-consuming and laborious. In order to alleviate
this problem, a continuous Hop®eld neural network
with a competitive strategy is proposed, so that the
penalty terms can be handled in a very e�cient man-
ner. All the neurons on the same row compete with
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one another to determine which neuron is the winner
in receiving the maximum input. According to Eq. (7),
the winning neuron sets its output to 1, and all the
other neurons on the same row are set to 0. In other
words, only the winning neuron has output 1, and the
outputs of the rest of neurons are set to 0. The com-
petitive learning guarantees that each row has only
one neuron with value 1, and this is the winning neur-
on. It also ensures that only n training vectors will be
classi®ed into these c classes. The competitive continu-
ous Hop®eld neural network, CCHNN, enables the
scatter energy function to converge rapidly to a mini-
mum value. By including Eq. (7) in the objective
energy function, the within-class scatter energy and the
weights of the connections can be further simpli®ed as

Ew � 1

2

Xn
x�1

Xn
y�1

Xc
i�1

1Pn
l�1 Vl;i

Vx;iDx;yVy;i �10�

and

Tx;i;y;i � ÿ 1Pn
l�1 Vl;i

Dx;y �11�

By inserting Eq. (10) into Eq. (8) to simplify the map-
ping, Eq. (8) can be modi®ed as follows:

dUx;i

dt
� ÿ 1

2

Xn
y�1

1Pn
l�1 Vl;i

Dx;yVy;i �12�

The CCHNN-based vector quantizer with a within-
class scatter matrix is thus performed as follows:

1. Initialize the input of neurons and codevectors in
the codebook to random values.

2. Apply the input-output relation given in Eq. (7) to
obtain the new output for each neuron.

3. Iteratively calculate the dynamic Eqs. (6) and (12)
for each neuron.

4. Go back to step 2 until the network converges.
5. Update the codevectors using the centroids of the c

classes.

3.2. The between-class scatter energy

A two-dimensional partially interconnected Hop®eld
neural network, in which the neurons are fully inter-
connected except for the neurons in the same column,
is used with between-class matrix criteria. The energy
function, described in Eq. (3), can also be rewritten as

Eb � ÿ 1

2

Xn
x�1

Xn
y�1

Xc
i�1

Xc
j�1
j6�i

Tx;i;y;jVx;iVy;j

� 1

l

Xn
x�1

Xc
i�1

1

Rx;i

Z Vx;i

0

gÿ1�x� dx

ÿ
Xn
x�1

Xc
i�1

Ix;iVx;i �13�

In Eq. (13), Tx,i;y,j is also symmetric (i.e.
Tx,i;y,j=Ty,j;x,i). The dynamic equation, and @E b/@Vx,i

based on the between-class scatter matrix for the neur-
ons, are

Cx;i
dUx;i

dt
� ÿUx;i

Rx;i
�
Xn
y�1

Xc
j�1
j6�i

Tx;i;y;jVy;j � Ix;i �14�

and

@Eb

@Vx;i
� ÿ

Xn
y�1

Xc
j�1
j 6�i

Tx;i;y;jVy;j � 1

Rx;i
Ux;i ÿ Ix;i

� ÿCx;i
dUx;i

dt
�15�

respectively. The objective function for describing the
vector quantizer in image compression based upon the
average squared Euclidean distance between any two
training vectors in di�erent classes is de®ned as

Eb � ÿ A

2
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In the same way as was described in the previous para-
graph, the between-class scatter energy and the weights
of connections can be further simpli®ed as

Eb � ÿ 1

2

Xn
x�1

Xn
y�1

Xc
i�1

Xc
j�1
j 6�i

1Pn
l�1 Vl;j

Vx;iDx;yVy;j �17�

and

Tx;i;y;j � 1Pn
l�1 Vl;j

Dx;y �18�

By inserting Eq. (17) into Eq. (15), Eq. (15) can be
modi®ed as follows:

dUx;i

dt
� 1

2

Xn
y�1

Xc
j�1
j6�i

1Pn
l�1 Vl;j

Dx;yVy;j �19�
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Thus, the CCHNN-based vector quantizer with a
between-class scatter matrix is performed as follows:

1. Initialize the input of neurons and codevectors in
the codebook to random values.

2. Apply the input-output relation given in Eq. (7) to
obtain the new output for each neuron.

3. Iteratively calculate the dynamic Eqs. (6) and (19)
for each training vector.

4. Go back to step 2 until the network converges.
5. Update the codevectors using the centroids of the c

clusters.

This describes a fact, shown in the Appendix and
pointed out by Fukunaga (1972), that minimizing the
intra-class Euclidean distance is equivalent to maximiz-
ing the inter-class Euclidean distance, and that it is
also equivalent to simultaneously minimizing the intra-
class Euclidean distance and maximizing the inter-class
Euclidean distance. This fact will also be proved in the
experimental results. It is also shown in the appendix
that the energy functions of these two CCHNNs must
converge to the minimization as time progresses.
Consequently, the simpler scheme for the CCHNN
based on the within-class scatter matrix can be selected
as the network for the vector quantizer.

4. Experimental results

In this paper the performance for the GLA and the
proposed CCHNN algorithm were compared for real
images. The codebook design is the primary problem
in image compression based on vector quantization.
The training vectors were extracted from 256�256 real
images, which were divided into 4�4 and 8�8 blocks
to generate 4096 and 1024 nonoverlapping 16- and 64-
dimensional vectors respectively. Three codebooks, of
size 64, 128 and 256, were built using this training
data. Fig. 1 shows the original and reconstructed
images. The original images are 256�256 pixels, with
eight-bit gray levels. In this experiment the com-
pression rate were 8/16=0.5 bits and 8/64=0.125
bits per pixel. The peak signal to noise ratio (PSNR),
which is de®ned for an N� N image as follows, was
evaluated in the reconstructed images.

PSNR � 10 log10
255� 255

1
N2

PN
x�1

PN
y�1�fxy ÿ f̂xy�2

�20�

where fxy and fÃxy are the pixel gray levels from the
original and the reconstructed images, and 255 is
the peak gray level. Pictures (d)±(f) and (g)±(i) show
the images reconstructed from the codebook design
by the GLA algorithm and the proposed CCHNN,
based on within-class or between-class scatter energies

with k=256, respectively. In the `Lena' image a, d
and g, the PSNRs completed by the GLA and the
CCHNN algorithms with a codebook of size k=256
and a compression ratio CR=0.500 were 26.35 and
29.63 dB, respectively. In the MR brain image c, f and
i, the PSNRs completed by the GLA and the CCHNN
algorithms with codebook size k=256 and a com-
pression ratio CR=0.500 were 26.33 and 31.37 dB, re-
spectively. In the boy±girl image b, e and h, the
PSNRs completed by the GLA and the CCHNN al-
gorithms with codebook size k=256 and compression
ratio CR=0.125 were 25.17 and 30.43 dB, respect-
ively. From the experimental results, the reconstructed
images obtained from the CCHNN based on the
within-class scatter energy are identical to those
obtained from the CCHNN based on the between-
class scatter energy. Table 1 shows the PSNRs of the
images reconstructed from the various codebooks and
di�erent compression ratios using the GLA and the
CCHNN algorithms. In accordance with Table 1, the
proposed CCHNN algorithm consistently produces
better results than those designed by the GLA algor-
ithm, no matter what the compression ratio and code-
book size are. Although the JPEG, a standard
approach in real applications, can produce a better
PSNR, the compression ratio is lower than in the
CCHNN algorithm. In summary, from the experimen-
tal results, it is seen that the proposed algorithm could
satisfactorily produce the codebook design, while the
network convergence is guaranteed. In fact however,
the Hop®eld network may settle down to a local mini-
mum after the network converges. This can be avoided
by incorporating the technique of simulated annealing
in the network (Kim et al., 1992).

From the experiments, the CCHNN usually takes
26±34 loops on average, to stabilize. Here, a loop is
considered as the updating of all rows of the CCHNN.

5. Conclusion

In this paper, an approach using the competitive
continuous Hop®eld neural network imposed by a win-
ner-take-all mechanism has been proposed to perform
codebook design in image compression based on vec-
tor quantization. Instead of iteratively updating the
codebook in a conventional algorithm such as GLA,
the codebook is updated just once after the last iter-
ation in the CCHNN. In the mathematical derivative
and experimental results, it has also been demonstrated
that the reconstructed images, obtained from the
CCHNN based on within-class scatter energy, are
identical to those obtained from the CCHNN based
on the between-class scatter energy. In addition, this
proposed algorithm lends itself admirably to parallel
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Fig. 1. Original images and reconstructed images with compression ratio=0.500 bpp using the GLA algorithm and the CCHNN algorithm

based on within-class or between-class scatter energies: (a)±(c) are the original images; (d)±(f) reconstructed images using the GLA algorithm and

(g)±(i) are reconstructed images using the CCHNN algorithm from a codebook of size k=256.
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implementation, and has great potential in real-time
applications.
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Appendix A

Comparing the dynamic Eqs. (12) and (19), the
CCHNN based on the between-class scatter matrix is
so complicated that it requires enormously more com-
puting time than those based on the within-class scat-
ter matrix to obtain a near-optimum solution.
However, Eq. (17) can be rewritten as follows:
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which implies that

@Ew

@Vx;i
� @Eb

@Vx;i
�A2�

Therefore, the minimization of intra-class Euclidean
distance is equivalent to the maximization of the inter-
class Euclidean distance.

Due to the symmetric connection matrix, the energy
functions Eqs. (4) and (13) are thus a Lyapunov func-
tion which guarantees that the network evolution will
reach a stable state with the minimum energy as time
progresses. As proof of this, taking the derivative of
the energy function with respect to time produces
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By inserting Eq. (8), or Eq. (15) into Eq. (A3), Eq.
(A3) can be updated as follows:
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Table 1

PSNR of the images reconstructed from codebooks of various sizes and di�erent compression ratios designed by the CCHNN and the GLA al-

gorithms

Codebook size 64 128 256

Compression ratio Algorithm Lena MR head Boy±girl Lena MR head Boy±girl Lena MR head Boy±girl

0.500 bpp CCHNNa 27.08 28.06 30.12 28.14 29.94 31.21 29.63 31.37 32.86

GLA 25.73 25.47 26.45 26.03 25.66 26.89 26.35 26.33 27.72

0.125 bpp CCHNNa 24.45 25.83 28.74 26.26 27.14 29.52 25.94 29.18 30.43

GLA 23.11 23.24 24.59 23.87 23.75 24.61 24.05 24.14 25.17

a The reconstructed images obtained from CCHNN based on within-class energy are identical to those obtained from CCHNN based on

between-class energy
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Using the chain rule for the di�erential equation, Eq.
(A4) becomes

dEw

dt
� ÿ

X
x

X
i

Cx;i
dUx;i

dt

dVx;i

dUx;i

dUx;i

dt

� ÿ
X
x

X
i

Cx;i
dUx;i

dt

� �2
dVx;i

dUx;i
�A5a�

and

dEb

dt
� ÿ

X
x

X
i

Cx;i
dUx;i

dt

dVx;i

dUx;i

dUx;i

dt

� ÿ
X
x

X
i

Cx;i
dUx;i

dt

� �2
dVx;i

dUx;i
�A5b�

Obviously, dEw/dtE0 and dE b/dtE0, because
Cx,i>0, (dUx,i/dt)

2>0 (replace dUx,i/dt with Eq. (12),
or Eq. (19)), and dVx,i/dUx,i>0. (Its derivative is
always positive due to the monotonically increasing
property of the input-output function.) No matter
whether it is based on the within-class or the between-
class scatter matrix, the energy function of the
CCHNN must converge to the minimization as time
progresses.
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